201 research outputs found

    Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling

    Full text link
    Recommender systems are essential for online applications, and sequential recommendation has enjoyed significant prevalence due to its expressive ability to capture dynamic user interests. However, previous sequential modeling methods still have limitations in capturing contextual information. The primary reason for this issue is that language models often lack an understanding of domain-specific knowledge and item-related textual content. To address this issue, we adopt a new sequential recommendation paradigm and propose LANCER, which leverages the semantic understanding capabilities of pre-trained language models to generate personalized recommendations. Our approach bridges the gap between language models and recommender systems, resulting in more human-like recommendations. We demonstrate the effectiveness of our approach through experiments on several benchmark datasets, showing promising results and providing valuable insights into the influence of our model on sequential recommendation tasks. Furthermore, our experimental codes are publicly available

    Using simulated Tianqin gravitational wave data and electromagnetic wave data to study the coincidence problem and Hubble tension problem

    Full text link
    In this paper, we use electromagnetic wave data (H0LiCOW, H(z)H(z), SNe) and gravitational wave data (Tianqin) to constrain the interacting dark energy (IDE) model and investigate the Hubble tension problem and coincidences problem. By combining these four kinds of data (Tianqin+H0LiCOW+SNe+H(z)H(z)), we obtained the parameter values at the confidence interval of 1σ1\sigma: Ωm=0.36±0.18\Omega_m=0.36\pm0.18, ωx=−1.29−0.23+0.61\omega_x=-1.29^{+0.61}_{-0.23}, ξ=3.15−1.1+0.36\xi=3.15^{+0.36}_{-1.1}, and H0=70.04±0.42H_0=70.04\pm0.42 kms−1Mpc−1kms^{-1}Mpc^{-1}. According to our results, the best valve of H0H_0 show that the Hubble tension problem can be alleviated to some extent. In addition, the ξ+3ωx=−0.72−1.19+2.19(1σ)\xi+3\omega_x = -0.72^{+2.19}_{-1.19}(1\sigma) of which the center value indicates the coincidence problem is slightly alleviated. However, the ξ+3ωx=0\xi+3\omega_x = 0 is still within the 1σ1\sigma error range which indicates the Λ\LambdaCDM model is still the model which is in best agreement with the observational data at present. Finally, we compare the constraint results of electromagnetic wave and gravitational wave on the model parameters and find that the constraint effect of electromagnetic wave data on model parameters is better than that of simulated Tianqin gravitational wave data.Comment: The article has been accepted by Chinese Physics

    Nested Named Entity Recognition from Medical Texts: An Adaptive Shared Network Architecture with Attentive CRF

    Full text link
    Recognizing useful named entities plays a vital role in medical information processing, which helps drive the development of medical area research. Deep learning methods have achieved good results in medical named entity recognition (NER). However, we find that existing methods face great challenges when dealing with the nested named entities. In this work, we propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon, in which the core idea is to model the dependency between different categories of entity recognition. The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module. The former part automatically assigns adaptive weights across each task to achieve optimal recognition accuracy in the multi-layer network. The latter module employs the attention operation to model the dependency between different entities. In this way, our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities. Extensive experiments on public datasets verify the effectiveness of our method. Besides, we also perform ablation analyses to deeply understand our methods

    TimeMAE: Self-Supervised Representations of Time Series with Decoupled Masked Autoencoders

    Full text link
    Enhancing the expressive capacity of deep learning-based time series models with self-supervised pre-training has become ever-increasingly prevalent in time series classification. Even though numerous efforts have been devoted to developing self-supervised models for time series data, we argue that the current methods are not sufficient to learn optimal time series representations due to solely unidirectional encoding over sparse point-wise input units. In this work, we propose TimeMAE, a novel self-supervised paradigm for learning transferrable time series representations based on transformer networks. The distinct characteristics of the TimeMAE lie in processing each time series into a sequence of non-overlapping sub-series via window-slicing partitioning, followed by random masking strategies over the semantic units of localized sub-series. Such a simple yet effective setting can help us achieve the goal of killing three birds with one stone, i.e., (1) learning enriched contextual representations of time series with a bidirectional encoding scheme; (2) increasing the information density of basic semantic units; (3) efficiently encoding representations of time series using transformer networks. Nevertheless, it is a non-trivial to perform reconstructing task over such a novel formulated modeling paradigm. To solve the discrepancy issue incurred by newly injected masked embeddings, we design a decoupled autoencoder architecture, which learns the representations of visible (unmasked) positions and masked ones with two different encoder modules, respectively. Furthermore, we construct two types of informative targets to accomplish the corresponding pretext tasks. One is to create a tokenizer module that assigns a codeword to each masked region, allowing the masked codeword classification (MCC) task to be completed effectively...Comment: Submitted to IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING(TKDE), under revie

    Exploring Adapter-based Transfer Learning for Recommender Systems: Empirical Studies and Practical Insights

    Full text link
    Adapters, a plug-in neural network module with some tunable parameters, have emerged as a parameter-efficient transfer learning technique for adapting pre-trained models to downstream tasks, especially for natural language processing (NLP) and computer vision (CV) fields. Meanwhile, learning recommendation models directly from raw item modality features -- e.g., texts of NLP and images of CV -- can enable effective and transferable recommender systems (called TransRec). In view of this, a natural question arises: can adapter-based learning techniques achieve parameter-efficient TransRec with good performance? To this end, we perform empirical studies to address several key sub-questions. First, we ask whether the adapter-based TransRec performs comparably to TransRec based on standard full-parameter fine-tuning? does it hold for recommendation with different item modalities, e.g., textual RS and visual RS. If yes, we benchmark these existing adapters, which have been shown to be effective in NLP and CV tasks, in the item recommendation settings. Third, we carefully study several key factors for the adapter-based TransRec in terms of where and how to insert these adapters? Finally, we look at the effects of adapter-based TransRec by either scaling up its source training data or scaling down its target training data. Our paper provides key insights and practical guidance on unified & transferable recommendation -- a less studied recommendation scenario. We promise to release all code & datasets for future research

    A survey of path planning of industrial robots based on rapidly exploring random trees

    Get PDF
    Path planning is an essential part of robot intelligence. In this paper, we summarize the characteristics of path planning of industrial robots. And owing to the probabilistic completeness, we review the rapidly-exploring random tree (RRT) algorithm which is widely used in the path planning of industrial robots. Aiming at the shortcomings of the RRT algorithm, this paper investigates the RRT algorithm for path planning of industrial robots in order to improve its intelligence. Finally, the future development direction of the RRT algorithm for path planning of industrial robots is proposed. The study results have particularly guided significance for the development of the path planning of industrial robots and the applicability and practicability of the RRT algorithm

    A novel method of weakness imbalance fault identification and application in aero-hydraulic pump

    Get PDF
    A method of combining auto-correlation and Hilbert envelope analysis is proposed and used to identify weakness imbalance fault of aero-hydraulic pump, the central part of hydraulic system of aircraft. Firstly, the integral and polynomial least square fitting is applied to convert acceleration signal to velocity one; secondly, the Hilbert envelope spectrum of auto-correlation function of velocity signal is obtained and used to identify the weakness imbalance fault of aero-hydraulic pump; finally, the energy ratio of velocity signal is calculated according to Hilbert envelope spectrum for identifying imbalance fault of aero-hydraulic pump by means of easier and more visual method. Meanwhile, the comparing analysis is carried out between traditional research method and proposed new one. The result shows that the weakness imbalance fault of aero-hydraulic pump can be identified and diagnosed effectively and correctly according to the velocity signal whether Hilbert envelope spectrum or calculation energy ratio while direct acceleration signal cannot

    Fluid Retention Caused by Rosiglitazone Is Related to Increases in AQP2 and α

    Get PDF
    Peroxisome proliferator activated receptor-γ (PPARγ) is a ligand-activated transcription factor of the nuclear hormone receptor superfamily. The decreased phosphorylation of PPARγ due to rosiglitazone (ROS) is the main reason for the increased insulin sensitivity caused by this antidiabetic drug. However, there is no clear evidence whether the nuclear translocation of p-PPARγ stimulated by ROS is related to fluid retention. It is also unclear whether the translocation of p-PPARγ is associated with the change of aquaporin-2 (AQP2) and epithelial sodium channel α subunit (αENaC) in membranes, cytoplasm, and nucleus. Our experiments indicate that ROS significantly downregulates nuclear p-PPARγ and increases membrane AQP2 and αENaC; however, SR1664 (a nonagonist PPARγ ligand) reduces p-PPARγ and has no effect on AQP2 and αENaC. Therefore, we conclude that in vitro the fluid retention caused by ROS is associated with the increases in membrane αENaC and AQP2 but has little relevance to the phosphorylation of PPARγ
    • …
    corecore